How to Determine Final State of Sequential Entries in a Pandas DataFrame Using Vectorized Operations?
This technical blog post will guide you through the process of determining the final state of sequential entries in a Pandas DataFrame using vectorized operations. We'll explore various approaches to achieve this efficiently.
Using the Pandas `apply()` Function
One effective way to handle this task is by utilizing the Pandas `apply()` function. This function allows you to apply a custom function to each row of a DataFrame, making it suitable for processing sequential data.
# Define a function to check the operation type
def check_op(operacao):
if operacao == 'inclusao':
...
# Apply the function to the 'operacao' column
data['codinccp_dadosrubrica'] = data['operacao'].apply(check_op())
This approach enables you to define a custom function that determines the final state based on the operation type and apply it to the entire DataFrame.
Vectorized Solution for Complex Scenarios
For more complex scenarios, where the series of operations is crucial and unique IDs are mutable, a custom vectorized solution can be employed.
# Sort the DataFrame by processing date
df = df.sort_values(by=['dh_processamento_rubrica']).reset_index(drop=True)
# Convert the 'operacao' column to a Categorical dtype for memory optimization
df["operacao"] = pd.Categorical(df["operacao"])
# Check for deleted IDs
deleted = df["operacao"].eq("exclusao")
deleted |= (df["operacao"].eq("alteracao")) & (~df["inivalid_nova_validade"].isna())
# Calculate the final status for each unique ID
final_status = deleted.groupby(df["inivalid_iderubrica"]).last()
excluded = final_status[final_status].index
# Handle alterations that change unique IDs
alter_inivalid_mask = (df["operacao"].eq("alteracao")) & (~df["inivalid_nova_validade"].isna())
df.loc[alter_inivalid_mask, "inivalid_iderubrica"] = df.loc[alter_inivalid_mask, "inivalid_nova_validade"]
df.loc[alter_inivalid_mask, "inivalid_nova_validade"] = "NaT"
df.loc[alter_inivalid_mask, "operacao"] = "inclusao"
# Get the final state for each unique ID
res = df[df["operacao"].ne("exclusao")].groupby("inivalid_iderubrica", dropna=False).last().reset_index()
# Remove those with a final status of excluded
res = res[~res["inivalid_iderubrica"].isin(excluded)]
This comprehensive solution addresses complex scenarios involving mutable unique IDs and provides a robust approach for determining the final state of sequential entries.
Conclusion
In this blog post, we explored different techniques for determining the final state of sequential entries in a Pandas DataFrame using vectorized operations.